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ABSTRACT

A possible alternative to the ordinary gas-like computation

for nuclear matter is investigated under the assumption that the

nucleons are arranged in a lattice. BCC, FCC and HCP structures

are investigated. Only HCP shows a minimum in the energy vs.

density curve with a modest binding energy of - 1. 5 MeV. The very

low density limit is investigated and sensible results are obtained

only if the tensor force decreases with the density. A study of the

elastic properties indicates that the previous structures are

mechanically unstable against shearing stresses.



I. INTRODUCTION

It can hardly be denied that the problem of nuclear matter

represents one of the most difficult and at the same time the most

challenging problem in nuclear theory. The principal reason for

rather an unsatisfactory solution of this central problem in nuclear

physics is that, one's attempts to reproduce the value of the volume

energy as close to 17 MeV as possible, have been frustrated largely

due to successive improvement of the theory with the tendency now-

adays to stabilize around 11. 1 MeV. This value was computed by

Siemens ( 1 ) using the most sophisticated many-body theory now

available, namely, the BBP approach. (2) A long way (about 6 MeV)

remains to be accounted for, however. In a recent thorough review

of the subject, H. Bethe ( 3 ) has indicated how contributions of a

different nature (none of them being absolutely watertight) can be

added to account for just about the missing 5- 6 MeV. Apart from

the uneasiness felt by the process of adding to a good solid number like

11. 1 MeV, a less firmly established contribution, the crucial question

remains as to whether the theory is actually reliable enough to be

considered the appropriate basis for understanding the shell model.
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The 5- 6 missing MeV are too big a chunk to be taken lightly. On

the other hand, one could assume the following dichotomic posture:

(a) the sought for volume energy is not actually 17 MeV but much

less, say about 12 MeV. This possibility was proposed some years

ago by one of the authors ( 4 ) by showing that summing the energy of

a finite nucleus,

E (alTT+Via) =a 2 1+(ajTja)

aa a

upon using a reasonable set of single particle energy levels, E0 an

analytic formula was obtained which could in turn be rewritten to

exhibit the dependence of the mass formula on A and Z. All the

well known terms, namely, volume, surface, asymmetry and

Coulomb were obtained. A new term was, however, found to

appear with the same sign as the volume energy, whose dependence

turned out to be A - 2 / 3 The term was shown to contribute 3 N 4

MeV for medium heavy nuclei. The various coefficients were given

analytically as functions of parameters usually encountered in the

shell model or optical model computations. The overall signifi-

cance of the computation does not rely on its numerical aspect,

but rather on showing that there could still be room for discussion

about the.proper limit of E/A where A -, m. (b) A second line of



thought was first introduced by Overhauser. (5) He pointed out that

a common feature of any many-body treatment is the yet unproven

hypothesis that the ground state of a Fermi gas is the familiar

sphere of occupied momentum states, instead of, for instance,

spatially periodic Hartree-Fock solutions. It therefore remains to

be seen if any other type of a single particle wave function could in

principle produce a lower energy. Plane wave functions bring out

the flavor of a gas, whereas, the abstract concept of nuclear matter

could also be thought of as a solid or a liquid. This paper reports

the results of a full many-body computation intended to indicate

that the nuclear matter is indeed not a solid or a quantum crystal.

If it is possible to make a definitive statement about nuclear matter

not being in a crystalline state, any extrapolation to liquid structure

is of course fraught with many more uncertainties. Liquids are

in general, difficult to distinguish from solids in many respects.

Liquid Ar, (6) for instance, clearly shows a crystalling structure

in its first shell with about 8 neighbors instead of the usual 12 in

the close packed structure, when viewed with neutron scattering

experiments. Other liquids still show solid-like structure with an

increased number of nearest neighbors. The whole concept of a

liquid is not clearly understood, as indicated by the partial success

achieved by distribution function theories and by Lennard-Jones-
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Devonshire theory (7 ) that reproduce reasonably well the data, even

though their starting point is quite different. The only clear-cut

definition upon which nobody disagrees is that liquids do not

possess any ability to resist shear stresses whereas solids do.

This mechanical definition is of fundamental importance in

the following sense. Suppose one computes the ground state energy

of a many-body system of nucleons by using, instead of plane waves,

wave functions such as Bloch wave functions or Wannier functions

and finds that the energy at the nuclear density turns out to be less

than the one yielded by the corresponding gas-like computation.

From that result it would be quite premature to conclude that the

solid structure necessarily represents the actual state of affairs.

The mechanical properties of the solid have to be tested. The

lower energy state can turn out to be totally unstable against

shearing stresses, i.e., one has to make sure that the elastic

constants of the medium do not go soft. M. Born ( 8 ) has given a

series of criteria to decide as to whether the ordered structure

melts, evaporates or goes into an intermediate state similar to

plastic or "gel. "

We have attempted three different ordered structures: BCC

(body-centered cubic), FCC (face-centered cubic) and HCP
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(hexagonal close packing). In the three cases, the system was

shown to be mechanically unstable agains t shearing stresses, or

put in a different way, the significant elastic constant went soft

for the density integral between 1012 gr/cc < p < 4 X1014 gr/cc.

One can therefore conclude quite safely that the idealized N = Z

infinite system at p a! 3. 1014 gm/cm 3 is surely not in any of the

most commonly encountered solid state structure. On energetic

grounds it turns out that the binding energy per particle E/N has

a minimum of - 1. 5 MeV at 2. 842 1014 gr/cc for the HCP structure

whereas for BCC and FCC the problem of the existence of a

minimum is much harder to discern.

II. THE MANY- BODY TREATMENT

The many-body treatmeiit used is an extension of the T-matrix

approach to quantum crystals (solid He 3 ) recently discussed by

Brandow. (9) An excellent review can be found in a paper by Guyer (1 0

The Slater determinant for a system of N particles is built up by

single particle wave functions of the form

3/ -3/4 -(2) r-RI 2
0(r) = 3/ e /2)r-R (1)

where R is the coordinate of the lattice site around which the

particle is supposed to perform an oscillatory motion under the
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combined influence of the remaining (N-1) particles. Equation (1)

is the eigenfunction of an harmonic oscialltor potential U(r),

centered around the lattice site R, i. e.,

1 2 2
U(r) = mw (r-R) 2  (21

The frequency w (which cannot exceed the Debye frequency wuD at

zero temperature) enters in the wave function (1) through the para-

meter a. = (mwuh). that represents the spread of 0 around the lattice

site. At the present stage of the computation such a parameter is

as yet unknown and plays a fundamental role in the theory. Some

remarks about the explicit form (1) are quite in order. One is

accustomed to think that a wave function of a particle in a crystal

should possess the periodicity of such a crystal or equivalently be

a Bloch function. To begin with, the HF equations are highly non-

linear and if one starts with a 0 of that form one will not necessarily

end up with such a form after the desired convergence has been

achieved. In the second place, any linear combination of Bloch

functions is still a solution; such a linear combination can turn out

to possess quite a high degree of localization (such as Wannier func-

tions) of the form given in eq. (1). Evidently one of the prices paid

by not actually performing such a linear combination of Bloch functions

is represented by the fact that the parameter w is unknown. The
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troubles encountered in not making such a consideration and bodily

considering 0 as a trial function with a as a variational parameter

3
are too well known in solid He not to be repeated here. Nosanow

and co-worker have determined a from HF.(12) We have followed

the same spirit in our calculation, i. e., we take the single particle

potential to be given by

U(r 1 ) = j (r 2 ) V (r 1-r2 )j (r2) d 
3 r 2  (3)

where the two-body nucleon-nucleon potential is taken to be Reid's

phenomenological soft-core potential. The sum over j indicates

the sum over the successive neighbor distances (shells) from a

given particle located at R 1 in an arbitrary system of coordinates.

The values of wv (or a.) obtained by solving eq. (3) are then used to

start the full HF equations which finally give the final form of 0.

The angular momentum decomposition of V(rl - r2 ) complicates life

quite a bit and it was found that.the following decomposition was

very useful

imR =

eR - (2t,- 1)J (mp)H( (mr)P (cos ep) p < r
R 2/rp t=o + 1/22 Z+ l1/2

with R 2 2 +2 Zrp cos (and on equivalent expression for r < p).
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Reid's potential is in its most important part a superposition of

Yukawa's. The structural nature of the specific crystal BCC, FCC

or HCP enters when the summation over j has to be performed.

Depending upon the density, the sum was performed over as many

neighbors as necessary to ensure a satisfactory convergence. At

nuclear density the number is about 5 - 6, whereas at much higher

densities, say p > 1015 gr/cc, one has to sum over at least 36

-1
neighbors. The values of a. , the spread of the single particle

wave function vs. p (density) are given in Tables 1, 3, 5 together

with the first neighbor distance. Each particle spreads

about 30% of the distance of the lattice site, an excursion quite

acceptable even on the basis of an empirical rule such as the one

often encountered: The crystal melts whenever the oscillations

reaches a sizable fraction of the lattice constant (Lindeman rule).

Even though this criterion can be easily seen not to have general

validity (to have a semi-quantitive basis, zero point oscilllations

are very large and yet do not induce any melting)our spread is well

within the safety margin for each nucleon to perform comfortable

excursion from its lattice site. We should perhaps remark that

Lindeman's rule can be derived in many alternative ways.



A major complication arises in the nuclear case because of the

possible spin configurations: given a structure, say BCC, one could

in principle arrange the protons and neutrons in practically an

infinite number of ways depending upon the spin configuration. In

a BCC structure one has two interpenetrating cubes amounting to

16 sites, 8 for neutrons and 8 for protons; the configuration is still

infinitely degenerate with respect to spin arrangements. One could

start with any site of a cube with, say, a neutron with its spin Ip;

in the next site on the same cube one can put Nt, N1, PL or Pt. In

the next point one again has the same degeneracy and so on. One

can come up with the most asymmetrical configuration with three

consecutive particles with spin t, then two with spin I and thus

randomly distributed as far as the unit cell is concerned. We have

tried many of them with an arbitrary degree of randomness just to

insure that they are not energetically convenient. It was then estab-

lished that this was indeed the case and that: for a given configuration

the minimum was achieved whenever the spins (of neighboring parti-

cles on the same cube) were symmetrically arranged, half with spin

up and half with spin down.

Natura non facit saltus (Lucretius, de Rerum Natura).
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An analagous situation was found to hold for the other two

configurations studied, namely FCC and HCP. In the usual nuclear

matter computation one sums over all the possible spin orientations,

an operation that is not allowed in a discretized structure such as

an ordered arrangement. This will explain why the energy per

particle formula looks different from the one that is usually

displayed in Brueckner formulation.

The many-body formulation used here is the same that has

been quite successfully applied to solid He3, or for that matter, to any

quantum crystal. The main difference will be in the angular momen-

tum decomposition of the two-body wave function, say r. In the

solid He 3 case, the formulation includes only 1=0 waves since the

Leonard-Jones potential is assumed to be a 1=0 state. This is not.

at all obvious and the authors ( 1 2 ) ave recently shown that a much

better agreement with the experimental data can be achieved if one

allows the He 3 atoms to interact also in 1=1, 2 states. In principle,

it is difficult to fully understand a wave function decomposed into

mangular momentum waves upon considering that the Y are related

to a sphere,whereas the particles are located spatially with a cubic

symmetry for BCC and FCC, and hexagonal symmetry for HCP. On

the other hand the phenomenological nucleon-nucleon potential now
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in extensive use is given explicitly for each S + L J wave and one is

m
therefore forced to decompose the wave function into Y . About

this point one could sophisticate a little bit more by considering how

the potential itself is deduced from the S-matrix. Reid potential is

not strictly under this jurisdiction since it is supposed to have been

deduced upon fitting scattering data and deuteron properties. Even then

the general basic-structure is written down on the pionic theory. When

one deduces V(x), one essentially Fourier-transforms the second

order of the S-matrix which in turn makes use of the Dirac free

spinors. Evidently this is not the case in a crystal structure where

the nucleons would have a relativistic harmonic-oscillator wave

function (which do not exist) as a spinor. The use of a free two-

nucleon potential could in principle be questionable but this is the

best one can do at the present time.

The actual computation of E/N has been reviewed elsewhere

and we will therefore only quote the results. Since the original

Slater determinant is made up of displaced harmonic oscillator

wave functions, the kinetic energy will evidently be

2
3K 2

K.E. 4 m N (4)
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The potential energy has a familiar form too, namely,

3 3
S(ij) V (ij) (i (ij) d3x. d x.

E P E 3 3 (5)
SE i< S (ij) Y. (ij) d3x. dx

where m is the free two-body wave function, i.e., I(rlr Z) = z (rl)r2 ,

whereas T(r 1 r 2 ) is the correlated or perturbed wave function which

we have to study. Transforming to relative and center of mass coordi-

nates, expression (5) becomes

1 N (r) V (r) T (r) dr 1 N Ndd
P.E. 2 3 z d d

A A f (r) (r) d3 r d

(6)

where NA is the number of particles at distance A from the one

chosen as the origin. In any non-T-matrix approach, like in

the Jastrow variational method, one does not have at this point an

equation for 4 of the same form as the one we are about to present.

The form of E IN is also different since a logarithmic term is added
PE.

to the potential. Among the various degrees of sophistication that

one can use to write down the equation for *, we shall make use of

(13)
the one first employed by Guyer and Zane, i. e.,
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T 1 + T 2 + U(1) + U(2) + V(12) J(121 = e(12) (7)

which is physically easy tounderstand. T(1) and T(2) are,

respectively, the kinetic energies; U(1) and U(2), the harmonic

oscillator potentials of particles 1 and 2; and V(12), the two-body

interaction potential. Equation (7\ is the equation of motion of two

particles, each of them moving in an harmonic potential centered

around two different points, and, in addition, interacting through

a two-body potential. When the two harmonic potentials are

centered at the same point (in par ticular, R 1 = R2 = 0), the problem

simplifies greatly and it was studied in connection with shell model

computations by Nigam ( 1 4 ) some years ago. Equation (7) is the

most difficult equation to solve. Once t is known, the energies

can easily be calculated. If one uses for U(1) and U(2) the

form (2), equation (7) becomes
(8)

h 22 2 2 1 2 2 22 +1 22 -A+ V Y
-- - - v + - a m + m2R 2 + - r - p r-*+ V(r) 7 = U

2M R ZP r 2 
1  2 2 )

mlm2 mlr l i r2m 21m 2 1+r 22
where p= ml+m2  , M = m + m 2 , r = r - r 2 , R = M

At this point it is usually assumed that Y = O(1 (2)g(r): if,

on one side, it is quite a pictorial way of stating that T differs from
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4 by a g(r) (correlation function), on the other side, it has quite

a disastrous consequence if one filters 0(1)0(2) to the left side of

eq. (8) (as is usually done), leaving an equation only for g(r).

Equation (8) as such, contains, after introducing Y* = fY/r, only

second derivatives, whereas the process of filtering 0(1)0(2) to

the left, introduces a first derivative which cannot be eliminated:

from the numerical point of view this is highly undesirable, as

we have found by personal experience. As a matter of fact, the

only computation that has made use of the equation for g(r) instead

(15)
of for Y itself, shows that the boundary conditions were more

difficult to meet. If, moreover, the potential V(r) has an

angular dependence, then the transportation of 0(1) 6(2) to the

left is totally illegal, since the remaining g(r) would still have to

be decomposed into partial waves, thus,

g(r) = g(r) Y (n) (9)

without the possibility of giving- any physical significance to t

whatsoever, since part of the physical angular momentum (most of it!)

contained in 4(1) 6(2) has been transported to the left. To be more

specific, a matrix element of the form

YL" (Q) V( ) V, () do
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with L and 4' defined by eq. (9) , would be completely meaningless.

Since in the nuclear case, V(r) is highly angular-momentum dependent,

the only choice is to write the full angular momentum decomposition

of' as

y(r1)= . oSM4+iiJM) T (r M r

(10)

in obvious notation. The second summation over 4' is introduced

to take into account the presence of .tensor forces. Equation (8)

contains a cos 6 term which (much like the Stark effect) couples 4

with -± 1. It does not couple different spins and therefore it is

to be expected that 1S 0  P 1 , D 2 will be correlated by such a term,

and analogously the triplet states 3S1 , 3S1P 3P ' 3P 3P
1, 2'

3 3- 3D 1'D D1 ' 3D Z will be linked together through the solid state term.

After substituting eq. (10) into eq. --(8) and performing a long angular

momentum algebra, the results are (x = r/r 0 , d = A/r 0 , a =ar):

SING LE T

h +- (E- U 0 )h 0 + a(x, d)hl = 0

h1 + (E- U 1)h l a(x, d) [h - 2h2] = 0

h + (E-U 2 )h 2  a(x, d)h 0

(11)
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where the following notation has been used

1 00 1.4
S: 0 0  h0 a(x, d) - a xd

1 10Pl: r0 = hl1 
1 1  1

1 20D : r = hz2 *22 2

TRIPLET

2

h + (E-U 3)h 3 - /8 VT 2  + 9 a(x, d) h4+3h5+5h = 0
2 -h

2
2pr 3 1h + (E-U 3 )h 3 - 8 VT h a(x, d) h4 h5 + h = 03 3 3 T 3 9 4

S1 h - -
h4+ (E-U4)h4+ 0 +- a(x,d) 3 +2h -2/)23+(/2h = 0

. 1 1 1 1 3h /+ (E-U )h + 0 +a(x, d) h -- h + h- h - h 0h5 (E-U 5 )h 5  0 3 3 8 = 0
5~2 32 ) 228

h' + (E-U )h + 0 +-a(x,d) + +  h = 06 6 6 3 3 / 3 7/ 5T

2

h" (E-U )h 7 - V 2 h 7 - -a(x5 d) h + h + -h 6  = 0

2 7
2pr 3 1

S- 0 + a(x, d) h - h + -1 h 6 1, 0h7 + (E-U7)h 7 - / VT  h h72

h 8 + (E-U 8 )h 8  0 - (x, d) 3h+ h = 0

(12)
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with the following notation

3 11 3 2 1

1 r 0 0  h3 2 Ir1 1  6

3 11 ~ 3 11
Sr0 =h D rh 2  h

1 02 3 1 2 7

3 01 3 11
0 11 4 r'20 7

3 11 3 2 1
P: r = h5 D2: r22 h8 (13)

The potentials Uk and Uk are given by

2
1 4 2 2pr0 V (4+ 1)U ax + - ~+

k 4 2 k 2
h x

2
1 42 2pr 0  ( ) 6

U a x + V D + -
3 4 2 2

A x

1 42 2 r 0U = ax + V S (14)
74 2 1

(15)
The two-body potentials Vk are taken from Reid.

As one can see, the equations are intrinsically coupled by

the solid state term a(x, d\. Only two normalization conditions are

therefore necessary: one for the singlets and one for the triplets.
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The solution of the 3 + 8 equations has presented us with major

numerical difficulties; no simple theorem of the Sturm-Liouville

form exist for coupled equations and the search for the ground state

energy was indeed a painful and delicate process.

The major concern was to make sure that the hk's had no

nodes or else that the energy eigenvalues being computed were actually

the lowest. In problems of stellar evolution and in studies of turbu-.

lence, equations of this nature frequently arise, but with the major

difference that seldom any eigenvalue problem has to be handled;

the energy E is just a prescribed parameter.

Given a certain A (first neighbor distance) and a (spread of

the wave function) we found that around the nuclear density

t 4 2 /2
p =nm, n= - , , r r

3 3 3 ' FCC 0
rFCC rBCC rHCP

the 3 + 8 solutions were behaving very well; by that we mean that

the maximum of the h's was at the proper neighboring distance, A

The shape of hk is essentially a gaussian as seen in the figures

below; this is to be expected since T differs from by a correlation

function that doesn't usually change the shape. The location of the

h's is very important since the energy of the system is proportional

to hV; classically hV is just V computed at exactly the lattice



site since the wave functions are all delta functions, i. e., when

a -. , 6 -. 5 (rl-R1). Quantum mechanically, besides the location

of the peak determined by the 3 + 8 equation, each h has a certain
-l

spread, -1. For the same r , if A increases the h's have a

tendency to lag behind.

We have tried three possible configurations: BCC, FCC and

HCP. The geometr-ical disposition of neutrons and protons as well

as the energy per particle are given below for each case.

Energy Expressions

As mentioned earlier, the energy expressions depend on the

spin arrangements. We will therefore have to distinguish among

several cases. Using Eq. (6) and the definition of 4 as given by

(10), the various possibilities are
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ao N, Nf (OR pf pt)
f$ a(x)jlih 6V 6  h5V5dx

fa(x)j [h 6 + h5] dx
0: 0

N+, N4 (OR P+ p4)

" a(x) j0 V 0 h0 + 5j 2V 2 h2]c f a(x)jl[2h 6 V6+ h V4],dx

2 = A + (I- A) 0

f a(x)[j 0 h0 +5j 2 h2]dx j a(x)j1[ 2h6 +h 4 ]dx
0 0

SD N pt

J 0 a(x)jl [h 6 V6 + h5 V5] dx

cz = B +
3a(x)j1 [h + h5] dx

5 1 1 V
a x) j h V + j Kj Oh7VT j 2 h V + j 3 v)dx

(x) j0 h3 + 2 (h8  5 h7 -2 J(Oh7 + j2 3) dx

dc N' ,P P+ c4

a(x) j1 [hlV1 ] dx a(x) [j 0 h0 V + 5j 2 h2 V2 ] dx a(x) [2h6V + h4V4 dx

4 0 0

a(x ) j [hl] dx a(x) [j0h0 + 5j2h2] dx a(x) jl [2h 6 + h4] dx[22 J

a(x) [j0h 3 Oh3VT + 2j 2 h7 V7 + 2j2h 7VT + 2(j0 7 V 3 + h7 V + j2 h3 VT+ 2 3 V7 )] dx

f a(x) [j0h3 + 2j 2 h 7 + 2(j0i 7  2+ Jr 3)] dx

i020 2
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As explained before, only two normalization constants are required.

They are simply determined by requiring that each energy denominator

should be normalized to unity in conformity with the man-body theory

requirement that

f d3 r = 1 .

The explicit forms of the constants A, B, C, D, E, F are finally obtained

and since they do not present any interest per se they have not been

written down here.

The remaining quantities are defined as

22-a x /4 ; 1 2a(x) = xe ' y =- axd

j0 =  sinhy ; j =  coshy - sinhy ; j 2 
= -coshy - + sinhy

y y y

The origin of the Bessel functions (of imaginary argument) can be

easily understood. When, in Eq. (5), we write the product of

0(1)4(2) for (ij) the result contains a term of the form

exp r

which, when expanded in plane wave in a form analogous to Eq. (10),

gives

2 2
MS 2(a /2) r = i. 14T(d2+ ) .(-i a ra) 'M 5 JS j )

SS r
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if only h0  0 one easily recovers the expression for the energy

used by Massey and Woo ( 1 6 ) in their study of solid He 3

If we sum up all the energy expre ssions, i. e., we sum

over the spin orientation, we recover the familiar expression of

Brueckner theory.

III. RESULTS

B.C.C. Structure

The geometrical disposition of the nucleons is shown in

Figure 1. Out of a plethora of possibilities, the one given

below was found to minimize the energy. In Table 1 we present

the results: the first column gives the density; the second

the appropriate lattice parameter; the third the location of the

first neighbor; the fourth the spread of the wave-functions; then

the kinetic, potential and total energy per particle follow in order.



TABLE 1

14 -1
px101 rBCC  A a KE PE E/N

(g/cc) (f) (f) (f) (MeV) (MeV) (MeV)

1.045 3. 175 2.75 1.04 28.63 -28.90 -0.2744

2.842 2.274 1.97 0.73 57.61 -54.95 +2. 667

3.96 2. 037 1.76 0.65 74. 18 -66.54 +7.642

14 3
At nuclear density p = 2. 842 x 10 gr/cm3, the system

is unbound with E/N = + 2. 667 MeV. To appreciate the nature

of the wave-functions we. list below in Table 2 the distance

in fermis where they peak at the various densities and the

first neighbor distance around which they should peak.



TABLE 2

LOCATION OF THE PEAK OF THE WAVE FUNCTIONS (in fermis)

14 1 1 1 3 3~ 3 3 3 3 3- 3p X 10 rBCC S 0  P D A S S P P P D D D 2

(g/cc) (f) (f)

1.045 3. 175 2.28 2.79 2.81 2.74 1.651 1.64

3.96 2. 037 1. 63 1.87 1.95 1.76 1.38 1. 14 1.79 1.71 1.73 1.4 1.42 1.72
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PRECEDING PAGE BLANK NOT FILMED

Here, too, at the nuclear density p 2. 84 x 10 gr/cm3 , the

system is unbound with an energy of +. 5936 MeV. We have also

added the values of E/N for much lower p. where the peak h's occur

at an nonphysical distance. It is seen that at rFCC = 10f, or p =

6. 69 x 10 1gr/cm3 , the potential energy is -8. 01 which is clearly

absurd.. The r eason can be easily understood by looking at Table 4,

where we present the location of the peaks of the various h's

(compared to where it should) for different densities. The situa-

tion becomes disastrous at lower densities and this explains the

unrealistic negative energy.

In Figures 3 - 18 we display the h' s at rFCC = 2. 566 for

two distances A = 1. 81f (first shell), and A = 9. 07f (24th shell),

and also exhibit the corresponding potentials in the combination

hV. It is seen that the location of the peak is excellent for

A = 1. 81f, whereas at A = 9. 07, the h' s lag behind. This is

of no particular consequence since the contributions of the 24th

shell are minute.

Since at low densities the wave-functions are not reliable,

the energy minimum that appears in the curve of E/N vs. p (Table 3)

is not to be trusted. One possible source of error could

be attributed to the HF; we therefore moved a quite arbitrarily



TABLE.4

LOCATION OF THE PEAK OF THE WAVE FUNCTIONS (in fermis)

1 1 1 3 3~ 3 3 3 3 3 3SrFCC S0 1 1 1 1 0 1 S S2 P P P D D

(gr/cc) (f) (f)

6. 69 x 10 1 2  10. 5.7 6.6 7. 5 7.07 1.5 1.2 5.7 5.1 4.8 1.2 1.5 6.6

2. 43 x 1013 6. 5 3.5 4.48 4.87 4. 59 1.56 1.36 4. 09 3. 9 3.7 4.48 1. 56 4.48

5. 35 x 10 5. 1.85 3.45 3.75 3. 53 1.65 1.35 3. 3 3. 15 2.85 3.45 1. 5 3.45

1.04 x 1014 4. 2.28 2.88 3. 12 2.82 1.68 1.32 2.76 2. 52 2.4 2.76 1.44 2.88

2.84 x 1014 2.866 1.805 2. 15 2.23 2. 02 1.46 1.20 2.06 1.89 1.80 1.97 1.29 2.06

3.96 x 1014 2. 566 1.64 1. 95 1.95 1.815 1. 44 1.13 1.85 1.745 1.64 1.85 1.23 1.85
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into two opposite directions: in both cases the results either did

not change appreciably or became more disastrous. A close

inspection of Table 4 shows that the misbehavior in the 8-equations

is much more pronounced than in the system of 3. Among the

3 3 3 3triplets waves, Po0  P 1  2 and D2 still behave reasonably

3 3~ 3 3
well whereas S1, Si, D 1 and D 1 grossly misbehave. The

reason can be seen to be the uneven presence of the tensor force

in Eq. (12): P P1 , P 2 and D do not contain VT in the

same way as the others do; we therefore arbitrarily put VT = 0

at low density. The situation improved quite remarkably. The

h's were having the maximum at the expected positions. This

procedure seemed to indicate that the tensor force should contain

a density dependent factor, say f(p), equal to one at p = p nucl.

which decreases when p decreases. Since only one point on

the curve is known, p = Pnucl.' one cannot hope to determine

the form of the function. The fact that at low density the values

of E/N are misbehaving is not at all surprising if we consider

that the explicit form of the nucleon-nucleon potential used here

has been fitted to data at the nuclear density and not any lower.

The argument is of general nature and one therefore would be

led to think that not only VT is affected, but all the remaining

parts of the potential. This is surely true, but a low densities
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the s-waves are dominant and their misbehavior is more important

than any other wave- consequently the tensor force that couples

3 3S1 and D1 plays a particularly significant role.

HCP Structure

A more interesting case is presented by the HCP structure.

It is known from solid state physics that in many instances when

an FCC structure ceases to exist as a result of some of its elastic

constants going soft, the crystal structure most frequently does

not melt but, rather, shears into an HCP structure. It was there-

fore natural to consider the possible alternative. The geometry

is shown in Fig. 19. The energy results are given in Table 5.

TABLE 5

-1
p rHp A a K. E. P. E. E/N E/N (VT = 0)

(gr/cc) (f) (f) (f) (MeV) (MeV) (MeV) (MeV)

13
3. 1 x 10 4.243 4. 243 1. 57 12.56 -12.06 +0.4998 8.48

13
5.35 x 103 3.536 3.536 1.334 17.43 -17.51 -0.0811 10.60

14
1.04 x 10 2.828 2.828 1.067 27.23 -27.35 -0. 1232

14
2.84 x 10 2.026 2. 026 0.765 53.04 -54.55 -1.5

14
3.96 x 10 1.8151 1.8151 0.672 68.64 -66.42 +2.219



TABLE 6

LOCATION OF THE PEAK OF THE WAVE FUNCTIONS (in fermis)

1 1 1 3 3 3 3 3 3 3- 3p rH S P D A S S P P P D D DrHCP 0 1 2 1 1 0 1 2 1 1 2

(gr/cc) (f) (f)

6. 69 x 101 7.07 5.51 6.78 7.42 7.07 1.7 1.27 5.73 5. 3 5. 1 6.6 1.5 6.6

3.1 x 1013 4.24 3.4 4.1 4.4 4.24 1.7 1.4 3.9 3.6 3.4 4.1 1. 5 4.1

5.35 x 1013 3. 53 2.7 3.5 3.8 3. 53 1.7 1.3 3. 3 3.1 2. 9 3. 5 1. 5 3. 5

1.04 x 1014 2. 83 2. 26 2.83 3.05 2.83 1.58 1. 24 2.7 2. 6 2.4 2.7 1. 5 2.83

2.84 x 10 2. 03 1.78 2.1 2.3 2.03 1.46 1.22 2.03 1.9 1.8 2.03 1.3 2. 1

3.96 x 1015 1.815 1.66 1.89 2.03 1.81 1.45 1.16 1.89 1.74 1. 6 1.815 1.3 1.89
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Again the situation becomes unrealistic as soon as the h's

start peaking at an unphysical distance. We have also included the case

V = 0. The situation regarding the location is markedly improved

at very low density, whereas it is probably over-estimated in the

intermediate region where the join-up should be smoother. In Table

6 we report the location of the peaks for the various h's. The HCP,

undoubtedly presents a distinctive characteristic with respect to

BCC and FCC. For the density region where the wave-functions are

still acceptable, namely in the lower part of the table, the energy

E/N vs. p has a minimum at exactly the nuclear density. It is

very slightly bound -1. 5 MeV.

IV. ELASTIC CONSTANTS

We have stressed in the Introduction that the system of

neutrons and protons arranged in a lattice structure must be

tested for stability against deformations. There have been

several attempts to derive criteriafor melting of a solid, the

well known amongst which is Lindemann's rule. This rule is

based on the assumption that a solid melts when the amplitude

of oscillation of a vibrating particle is a sizable fraction of the

nearest neighbor distance. Such an empirical criterion can only

be regarded as a convenient "rule of thumb" designed to test

semi-quantitatively the stability of a crystalline structure and
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indeed, a complete theory of melting must necessarily examine

the detailed stability of a lattice when it is deformed under

shearing stresses.

Any lattice has to satisfy the requirement that its energy

density must have a stationary value at equilibrium. However,

for the structure to be stable, the energy must have a positive

definite quadratic form, thus leading to aQ increase in its, value

when undergoing a small strain. For the purpose of investigating

the mechanical stability of a crystal lattice we consider a cube

with side Za which is deformed homogeneously into a parallelepiped

whose sides are the vectors r 1 , r 2 , r 3 . Thus the lattice points

of the undistorted cube which are described by

- o ( 1 a, Za ,' 3 a

are now given by the vectors

6 = trl +2r2 3r3

where the integers e 2' 3 assume different sets of values for

the B. C. C. , F. C. C. lattices. Now for small deformation the

square of the distance from the origin is given by
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R R 2 + a 2 e = R +6 , (16)
o as a o

where e are the strain components of the theory of elasticity:
as

2 2 2 2 2 2
rI - a r2 - a r3 - a

ell= 2 e 2 2  2 e33 - 2
a a a

e = , etc.
23 2a

The total potential energy E of a lattice where the interparticle

forces are only central, may be written as

E/N= 2 a

But since for any function (r) we have

d 2 
2+d0r + r= 6

o o

we may express (r) in a Taylor series:

2 +()+ (D)R )
a 2de ta er c n D2R ian) oc 2 Ro  "'

and hence the potential energy can be written as
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(E/N) = + D + 52D ... (17)

2 2a2 a 2
= (E/N) + - et De + a e e t, D2

0 4 aga 1 av a v

Here the first term on the right-hand side is the energy of the

undeformed cube which will be neglected hereafter; the second

term is zero at equilibrium while the last term may be rewritten

as

(E/NV) c e +e +e e +e e +eyy)
( 2 1 xx yy zz 12 yy zz zz xx xxyy

1 2 2- 2
+ c 4 4 (e z + ezx exy) (18)

with

2a D 2 2t 4-

Sy 1

2c a - D 2 2 -2

2a E'D2 ,2 P
c - LD. -P

44 y 2

3
y = 4(BCC) , y = 2(FCC) , V = ya

and the summation extends over successive shells.

If we now identify R with Ad , the distance from the origin

of various shells, we can compute, numerically, the first and

second derivatives of the potential energy at successive shell

distances and sum over a desired number of shells (in order to
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achieve convergence) and evaluate the elastic constants cll and

c 12 as a function of the matter density p. The crystalline

structure is considered stable if (E/NV)6 > 0, i. e., if there is

a gain in energy while undergoing a deformation. It is straight-

forward to show that the quadratic form (18) is positive-definite

provided the following conditions are satisfied:

C11 + 2c12 > 0 ,

c >0
44

C - c2 > 0 .

Physically it is clear that the elastic constant c 4 4 represents

the shear modulus as it multiplies that part of the deformation

energy which is proportional to the non-diagonal terms, e
yz

e
zx

For computing the elastic constants we follow the procedure

outlined by Born ( 8 ) and the results for nuclear matter arranged

in an FCC lattice are (in units of 1035 dynes/cm2):

C11= -2.83 c 4 4 = -. 71 rFCC= 2.57f , p = 3.96 x 1014 gm/cm 3

11 -1.79 c4 4 = -. 48 rFCC 2.86f , p = 2.84 x 1014 gm/cm 3

thus indicating a complete mechanical instability of the system. Here the

pressure P is very small compared to the C' and hence C a C
C$ 12 44.
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For a BCC structure the corresponding elastic constants

again come out to be negative and the system is evidently mechani-

cally unstable. We thus conclude that nuclear matter is unlikely to

6xist in any of the commonly occurring crystalline structures.

V. CONCLUSIONS

None of the most common solid-state structures seem to be

an even probable candidate to represent what is known as nuclear

matter. The conventional BCC and FCC configurations very likely

do not even give a minimum in the energy curve, or, if they do so,

it would be in a density region much lower than the usual nuclear

matter density. However, HCP does have a minimum at

14 3
S= nucl. = 2. 842 x 10 4 gm/cm with a modest binding of energy of

-1. 5 MeV, about a factor of ten lower than the experimental value.

In conclusion, a solid-state structure does not seem to be

a better alternative to the usually employed gas computation.

It remains to be seen what an actual liquid type of computa-

tion would do. Due to the great difficulties already encountered

in the theory of classical liquids, an extension of that formalism

to include complicated angular and spin dependent nuclear forces

does not seem to be just around the corner.
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FIGURE CAPTIONS

Fig. 1: The B. C. C. arrangement for an equal number of
neutrons and protons

Fig. 2: The F. C. C. arrangement for an equal number of
neutrons and protons

Fig. 3: The singlet t= 0 wave-functions h vs. r at a given
density.

The peak is very pronounced and it is around the
first neighbor distance.

Fig. 4: Same as in Fig. 3 for the triplet, t = 0 case.'

Fig. 5: Same as in Fig. 3 for the triplet, t, = 1 case.

Fig. 6: Same as in Fig. 3 for the triplet, == 2 case.

Fig. 7: The product hV vs. r [ S(IS ) h etc.] for
singlet even.

Fig. 8: The product hV vs. r for the mixed terms.

Fig. 9: The product hV vs. r for the triplet odd case.

Fig. 10: The product hV vs. r for the triplet even case.

Fig. 11 - 18: The same as for Fig. 3 - 10 for the 24th shell.

It can be seen that the wave-functions lag behind,
i. e., they do not peak quite at the appropriate A .
This brings too much attraction into the energy.
Fortunately the contribution of such a distant shell
is negligible.

Fig. 19: The H. C. P. configuration for equal number of
neutrons and protons.
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